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Abstract

Multiple object tracking (MOT) is an active and challeng-
ing research topic. Many different approaches to the MOT
problem exist, yet there is little agreement amongst the com-
munity on how to evaluate or compare these methods, and
the amount of literature addressing this problem is limited.
The goal of this paper is to address this issue by providing
a comprehensive approach to the empirical evaluation of
tracking performance. To that end, we explore the tracking
characteristics important to measure in a real-life applica-
tion, focusing on configuration (the number and location of
objects in a scene) and identification (the consistent label-
ing of objects over time), and define a set of measures and
a protocol to objectively evaluate these characteristics.

1 Introduction

Although object tracking is considered a mature field of
research, there is a disturbing lack of uniformity in how
results are presented by the community. Award-winning
tracking papers rarely use the same data or metrics. This
makes comparisons between different methods difficult and
stifles progress. At the root of this problem is the lack of
common data sets and performance measures (with few ex-
ceptions, such as PETS [5]). In this paper, we will outline a
framework for evaluating MOT methods which allow for (1)
numerical evaluation to measure performance, and (2) visu-
alization to understand tracking phenomena. We will also
define specific measures and protocols within this frame-
work relevant to academic and real-life evaluation.

In order to define a framework for tracking evaluation,
it is important to understand what qualities are essential to
good tracking. To do so, it can be helpful to consider what
constitutes a “golden” multi-object tracker. One could argue
that a good tracker, in a real-life situation, should:

1. start automatically,
2. track objects well - place the correct number of track-

ers at the correct locations each frame,
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3. identify objects well - track individual objects consis-
tently over a long period of time,

4. track objects in spite of distraction (occlusion, illumi-
nation changes, etc.),

5. accurately estimate task-specific object parameters
(such as object velocity),

6. be fast.

This list can be reduced to four key properties (items 2, 3,
5, and 6). Item 2 refers to the configuration, or the number
and location of objects in the scene. Item 3 refers to identifi-
cation: the consistent labeling of objects over a long period
of time. Items 1 and 4 depend on the model and type of
tracking algorithm, and can be indirectly measured by mea-
suring the configuration and identification. Item 5 refers
to the ability of the method to correctly predict some task-
specific parameter of an object in the scene. Finally, item
6 refers to the speed, or computational cost of the method.
This paper focuses on the more generic tasks of evaluating
configuration and identification.

There have been recent attempts to measure configura-
tion and identification in the past with various degrees of
success [4, 2, 3, 6]. In [4], measures were proposed to eval-
uate the configuration of a single-object tracker to a limited
degree. In [2], configuration and identification were evalu-
ated based on the distance between centroids of the objects
and the trackers. However, this method does not account for
two differently shaped objects that share a centroid. In [6],
configuration measures were defined similar to the four con-
figuration errors we propose here, but an overall configura-
tion measure is not provided and the issue of identification
is not addressed. In the very recent work of [3], two iden-
tification measures and two configuration measures similar
to ours were independently proposed, but with important
distinctions, detailed in later sections. Evaluating compu-
tational cost can be a complex task [7], and is beyond the
scope of this paper.

The remainder of this paper is organized as follows.
First, we introduce fundamental concepts to tracking evalu-
ation in Section 2. We describe, in detail, how to evaluate
configuration in Section 3. Section 4 describes identifica-
tion evaluation. Section 5 outlines how task-specific mea-
sures can be fit into the framework, and Section 6 contains
some final remarks.
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Figure 1: Precision (ν) and recall (ρ). For good quality tracking,
both precision and recall should have high values (seen right).

2 Basic Concepts

For this document, objects or tracking targets are referred
to as ground truth objects (GT ), are denoted by lower-case
characters (a, b, c,...), and indexed by j. Tracker outputs
are referred to as estimates (E), are represented by num-
bers (1,2,3,...), and are indexed by i. We make the assump-
tion that Es and GT s can be described as sets of templates
with corresponding transformations. For example, a com-
mon tracker output is a bounding box with translation and
orientation information Ei = (xi, yi, θi).

Two fundamental measures which do not depend on the
shape of the GT or the E are precision and recall. They are
often used in information retrieval [1], but can also be useful
for determining if and how well an object is being tracked.

Recall. Given a ground truth GT j and a tracking esti-
mate Ei, the recall, ρi,j , is expressed as

ρi,j =
|Ei ∩ GT j |

|GT j |
. (1)

Recall measures how much of the GT is covered by the
E and can take values between 0 (no overlap) and 1 (fully
overlapped). It is possible to have a high recall yet have
poor quality tracking, as seen in the center of Figure 1.

Precision. Precision, νi,j , is defined similarly as

νi,j =
|Ei ∩ GT j |

|Ei|
. (2)

Precision measures how much of the E covers the GT and
can take values between 0 (no overlap) and 1 (fully over-
lapped). It is possible to have high precision with poor qual-
ity tracking, as seen on the left of Figure 1.

Coverage Test. The coverage test determines if a GT is
being tracked, or if an E is tracking. We can see from Figure
1 that good tracking requires both high ρ and ν values. The
coverage test should only label Ei as ”tracking” or GT j as
”tracked” if the ρi,j and νi,j values are high. The F-measure
(F = 2νρ

ν+ρ
) is suited to this task, as F is only high when

both ρ and ν are high [1]. Thus, to determine if Ei is being
tracked by GT j and vice-versa, the F-measure must exceed
tC , a coverage threshold ( Fi,j > tC). In the simplest case,

Figure 2: Types of configuration errors. Five bounding boxes Es
(1,2,3,4,5) attempt to track five GT s (a, b, c, d, e).

tC = 0, so that if there is any overlap between the Ei and
the GT j , the coverage test is passed.

3 Configuration

Configuration refers to the number and placement of ob-
jects in the scene. In order to evaluate configuration, we
must first define what a correct configuration is: a tracker
is correctly configured when exactly one E ( GT , resp.) is
tracking each GT (E , resp.). Any departure indicates an
error in configuration. An E /GT is considered to be “track-
ing/tracked” if it passes the coverage test. In this section,
we present five configuration measures (labeled C-1 to C-5)
and a procedure for evaluating the configuration.

3.1 Configuration Errors

It can be useful to consider a tracking system whose sole
task is to estimate the correct object configuration. Look-
ing at the modes of failure for such a system, it is possible
to understand the modes of configuration failure. An ob-
ject counter, for instance, simply reports the locations and
number of objects in the scene without considering iden-
tity. There are four basic types of errors that this system
can make. First, the system may indicate the presence of
an object which does not exist. This type of error is shown
in Figure 2 where estimate 4 appears over an empty back-
ground. A second type of error may occur when an object
exists, but the system does not recognize it (as object c in
Figure 2 ). The third type of error occurs when one object
is tracked by multiple estimates (e.g. b is tracked by 2 and
3). The last type of error occurs when multiple objects are
tracked by one estimate (e.g. d and e are tracked by 5).
Each of these errors corresponds to one of the four types of
configuration errors:

• Measure C-1: (FP) - False Positive. An estimate ex-
ists that is not associated with a ground truth object.

• Measure C-2: (FN) - False Negative. A ground truth
object exists that is not associated with an estimate.
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Figure 3: Counting MO errors. The scene on the right is “more
correct” than the left.

• Measure C-3: (MT) - Multiple Trackers. Two or more
estimates are associated with the same ground truth. A
MT error is assigned for each excess estimate.

• Measure C-4: (MO) - Multiple Objects. Two or more
ground truth objects are associated with the same esti-
mate. A MO error is assigned for each excess ground
truth.

Cases can exist where MO and MT are combined, as in the
right side of Figure 2. Here, the upper E is tracking both
GT s, and the right GT is tracked by two Es. This situation
would result in two errors, one MO and one MT.

MO and MT errors both give an error for each excess
object/estimate. This most closely matches the human intu-
ition for correct configuration, though other methods could
be considered. In Figure 3 two scenarios are presented, each
with errors in configuration. On the left, one E covers four
GT s. On the right, two Es cover two GT s each. To a hu-
man observer, the scene on the right is ”more correct” than
the scene on the left. Using our convention, the scene on
the left produces 3 MO errors, and the scene on the right
produces 2 MO errors, matching human intuition. Another
option could be to assign just one error, irrespective of how
many objects were covered. This would produce the unde-
sirable result of 1 MO error on the left and 2 MO errors on
right. A third option could be to assign an error for each
object covered by the estimate. This option also yields un-
desirable results, where both scenes produce 4 MO errors.

In [3], FP and FN errors are defined in such a way that
they can not be computed each frame, and are based on
overlap, not a combination of ν and ρ, such as Fi,j .

3.2 Configuration Maps

Now that the configuration errors are defined, we must es-
tablish an effective, automatic procedure for counting them.
This is done by setting associations between GT s and Es,
called configuration maps. Locating configuration errors
then becomes a simple matter of inspecting the configura-
tion maps.

A configuration map can be thought of as a table whose
entries indicate tracking associations. Configuration maps
can be constructed from the perspective of the GT s or the

Es. Each column of a configuration map w.r.t. E indicates
which GT s passed the coverage test (as seen in Table 1 for
the example of Figure 2 ). In the other direction, each col-
umn of a configuration map w.r.t. GT indicates Es which
passed the coverage test (Table 2). The procedure for con-
structing the configuration maps is outlined in Figure 4.

estimate E

1 2 3 4 5

GT a b b - d,e
↑ ↑

FP MO

Table 1: Configuration map w.r.t. E for Figure 2.

ground truth GT

a b c d e

E 1 2,3 - 5 5
↑ ↑

MT FN

Table 2: Configuration map w.r.t. GT for Figure 2.

The four configuration error types can be inferred from
inspection of the configuration maps. For configuration
maps w.r.t. E , a false positive (FP) is identified by a col-
umn with blank entry (the E is not tracking any object; es-
timate 4 in the example). A multiple object (MO) error is
identified by a column with multiple entries (indicating an
estimate is tracking multiple objects; estimate 5 covers both
objects d and e in the example). The map w.r.t. GT can
be used to detect FP and MT errors. A false negative (FN)
is identified by a column with a blank entry (the GT is not
being tracked; c in the example). A multiple tracker (MT)
error is indicated by a column with multiple entries (the GT
is being tracked by multiple Es; in the example, object b is
tracked by estimates 2 and 3).

Configuration Map w.r.t. E

• for each estimate, Ei

– calculate the F-measure with each ground truth
object Fi,j =

2νi,jρi,j

νi,j+ρi,j
.

– map GT j → Ei if Fi,j > tc.

• end

Figure 4: Procedure for establishing configuration mappings.
The Configuration Map w.r.t. GT is built in a similar manner for
each GT .

3.3 Configuration Distance

We previously established that a correct tracking configura-
tion has one E to every GT . To assess the overall configu-
ration, one can measure the difference between the number
of GT s and the number of Es.
• Measure C-5: (CD) - Configuration Distance. The

difference between the number of Es and GT s normal-
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Figure 5: Occlusion. Arrows indicate the direction of motion of
the objects. See text for details.

ized by the instantaneous number of GT s in a given
frame. Specifically,

CD =
N t

E − N t
GT

max(N t
GT , 1)

(3)

where N t
E is the number of Es in frame t, and N t

GT is the
number of GT s. The CD should be zero when the number
of GT s and Es is the same. It is negative when N t

GT > N t
E

and positive when N t
GT < N t

E . An absolute value is not
applied to the numerator here, but later when averaging the
CD over time (Section 3.5), so that the negative and posi-
tive values of CD at each frame can indicate the direction
of failure. The denominator is max(N t

GT , 1) to prevent in-
finite values when N t

GT = 0. In some cases, the CD can
be misleading. In a scene with N t

GT = 4, a system might
track three GT s correctly, miss one (FN), and produce a FP
(making N t

E = 4). This example yields a CD = 0, indi-
cating perfect configuration, when in fact two errors have
been made. For this reason it is important to report the CD
in conjunction with the configuration errors.

3.4 Occlusion

Occlusion is a special case that can cause spurious errors to
appear when evaluating the configuration. When two GT s
overlap, Es which are correctly configured will also over-
lap. This can generate MT and MO errors, though the con-
figuration is correct. To handle this situation, an occlusion
flag, occ, is defined so that when two GT s (j and k) overlap
above a threshold tO, MT and MO which involve GT j or
GT k will not be generated. The occ is defined directionally
per object instead of pairwise to handle the case of multiple
occlusions.

occj =

{

1, ∃ GT k s.t.|GT j ∩ GT k| > tO
0, otherwise

(4)

An example is shown in Figure 5 (tC = 50%, tO = 80%)
where objects a and b approach each other in the first frame,
partially occlude in the second (but neither tC or tO is ex-
ceeded), and nearly fully occlude in the third. The occ flag
prevents errors from being produced in the third frame.

3.5 Procedure and Example

The procedure for evaluating the configuration of a track-
ing sequence is presented using the example in Figure 6,

Figure 6: Configuration errors in a hypothetical tracking scenario.
Errors in upper-left indicate accumulation of errors over the sequence.
(Frame 1) a stands alone untracked, generating a FN. (Frame 2) An E

begins to track a. (Frame 3) b and c enter untracked from either side, each
generating a FN. (Frame 4) An E begins to track c; b remains untracked.
(Frame 5) Upper E tracks a and c causing a MO, a is tracked by 2 Es caus-
ing a MT. (Frame 6) c and b are tracked. a produces a FN. (Frame 7) b

leaves the scene; two lost Es cause FPs on the right; a remains untracked.
(Frame 8) c leaves the scene; a is tracked correctly.

where three objects (a,b,c) are tracked over eight frames.
Configuration errors are indicated in red. The procedure for
configuration evaluation itself is outlined in Figure 7.

In steps 3 and 4 of Figure 7, the basic configuration mea-
sures are normalized by max(N t

GT , 1) and averaged over
the length of the sequence (except for CD). As with CD in
Section 3.3, the denominator prevents infinite values when
no GT s are present (whereas [3] can not evaluate frames
where N t

GT = 0). These normalized measures are reported
to facilitate the comparison of performance over datasets
with varying length and numbers of objects. Results from
the example are simple to compute, shown in Table 3.

In Figure 8, the CD and sum of errors normalized each
frame by max(NGT , 1) is plotted against time. Graphs like
this can be useful to showcase the performance of a tracking
method on a short sequence, but not for long sequences or
batches of experiments.
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Procedure for evaluating configuration.

1. Construct configuration maps for each time step.
2. Using configuration maps, determine FP, FN, MT, and MO

errors for each frame as described in Section 3.2.
3. Report FP, FN, MT, and MO: the accumulation of each

error type normalized by max(N t
GT , 1) each frame, aver-

aged over the total number of frames, n.

FP =
1

n

n
X

t=0

FP
t

max(N t
GT

, 1)
, FN =

1

n

n
X

t=0

FN
t

max(N t
GT

, 1)
,

MT =
1

n

n
X

t=0

MT
t

max(N t
GT

, 1)
, MO =

1

n

n
X

t=0

MO
t

max(N t
GT

, 1)
(5)

4. Calculate CD for each frame and report CD.

CD =
1

n

n
X

t=1

|CD| (6)

Figure 7: Procedure for evaluating configuration.

FP FN MT MO CD

2 7 1 1 -5

FP FN MT MO CD

.13 .40 .04 .04 0.35

Table 3: Results for example of Figure 6. (top) Accumulation of
errors over 8 frames. (bottom) Time-averaged errors from step 3
of Figure 7.

3.6 Track State

The track state, τ , defined for each GT , is a simple bi-
nary variable indicating if a GT is being tracked or not.
While not a measure in itself, it will be useful for (1) setting
rules when to evaluate task-specific performance measures
in Section 5 (e.g., rule: only compare the velocity of Ei to
GT j when τj = 1), and (2) to visualize performance. Track
state is related to the configuration in that it provides a his-
tory of if and when GT s are tracked. Track state is defined
as

τj =

{

1, ∃ Ei s.t. Fi,j > tC
0, otherwise

(7)

Figure 8: Configuration errors and CD reported for each frame
for example of Figure 6.

Figure 9: Tracking results can be visualized by plotting τj with
the presence of GT s.

In some cases, it may be useful to visualize the temporal
evolution of τ for several objects. Plotting τ and the pres-
ence of GT s allows one to visualize scene entrances/exits,
and temporary tracking losses. An example can be seen in
Figure 9.

4 Identification

In object tracking, identification implies the persistent
tracking of an object by a particular estimate over time. This
differs from configuration, which is concerned only with the
spatial relations between Es and GT s. Identification is con-
cerned with both temporal and spatial relations. It is impor-
tant to note the difference between this type of identification
and identification in the recognition sense (i.e. ”estimate 1
is Bill Clinton”). In this section, we will present four iden-
tification measures (labeled I-1 to I-4) and a procedure for
evaluating how well a tracker identified objects in the scene.

4.1 Identification Errors

Examining the modes of failure of a path matching system
whose sole task is to correctly identify Es and GT s in a
sequence can assist in understanding the types of identifica-
tion errors. This path matcher must examine a set of E and
GT trajectories to determine which E trajectories identify
each GT trajectory, and vice versa. Ideally, if the configu-
ration and identification are correct throughout, each GT j is
tracked by exactly one particular Ei over its entire lifetime.
In this case, GT j is said to be identified by Ei and that Ei is
said to be identifying GT j . An important intrinsic property
of identity is that each E can identify at most one GT , and
that each GT can be identified by at most one E , though
they do not necessarily have to match.

There are two types of identification errors that can be
produced by the path matcher. First, it is possible that at
some point, GT j is tracked by some other estimate, Ek. An
example of this is shown in Figure 10 where object a is
identified by estimate 1 (blue), but later tracked by estimate
2 (red). The other error type occurs when Ei tracks GT j for
a while, but then ”swaps” ground truths and begins tracking
GT l. Swapping is a common problem in tracking, and can
be seen in Figure 10 where estimate 3 (green) swaps from
object b to c. Thus, we can define two types of identification
errors:

• Measure I-1: (FIT) - Falsely Identified Tracker. An
Ei segment which passes the coverage test for GT j but

5



is not the identifying E .

• Measure I-2: (FIO) - Falsely Identified Object. A
GT j segment which passes the coverage test for Ei but
is not the identified GT .

For an E to identify a GT or for a GT to be identified by
an E , they must be associated in the identity maps, which
are defined in the next section. A segment is defined as a
consecutive set of similarly labeled frames (e.g. the frames
where green tracks b in Figure 10 is a segment). In [3],
errors similar to FIT and FIO are defined which differ in
the mapping method (an ad-hoc temporal threshold is used).

4.2 Identity Maps

In the example of Figure 10, it is fairly obvious which Es
truly identify each GT , and vice versa. However, this is
not always the case. Sometimes, in the face of poor track-
ing, it can be difficult even for a human to determine proper
associations. Cases can arise where identification is not re-
ciprocated, for instance GT j might be best identified by Ei,
but Ei is better described as identifying GT k.

Finding a good method to associate identities is criti-
cal. Several methods could be considered, such as an in-
stant association (as soon as an E appears, it identifies the
first GT for which it passes the coverage test), delayed as-
sociation (when an E appears, it identifies the first GT for
which it passes the coverage test after an arbitrary time de-
lay), and exit association (each E identifies the last GT for
which it passed the coverage test). However, each of these
rules introduce undesirable flaws and inconsistencies. To
avoid such problems, we form identification associations
on a ”majority rule” basis, where an E identifies the GT
it spends the most time tracking, and a GT is identified by
the E which tracks it the largest amount of time (tracking
implies passing the coverage test).

Identity maps, in a similar manner to configuration maps,
can be thought of as a table describing identity associations
between Es and GT s. As with configuration maps, there

Figure 10: Types of identification errors. Three objects are
tracked by three estimates. A falsely identified tracker error
(FIT) occurs when object a is tracked by a second estimate, E2.
A falsely identified object error (FIO) occurs when an estimate
swaps ground truths (E3 swaps from GT b to GT c).

exist two directions from which maps can be created (w.r.t.
GT and w.r.t. E). The map w.r.t. E is formed by first col-
lecting all the GT s which pass the coverage test for Ei into
nij ,

nij =
∑

t

∑

j

�
(F t

i,j > tc) (8)

where
�

is the indicator function. A winning GT , ĵi, is
determined from nij for Ei, and mappings are established
as described in Figure 11. A similar procedure is done for
the map w.r.t. GT .

Identification Map w.r.t. estimate E

• for each estimate, Ei

– collect GT s which pass the coverage test into a
function nij =

P

t

P

j

�
(F t

i,j > tC ])

– determine the majority rules winning estimate ĵi =
arg maxj nij

– map Ei → GT ĵi

• end
Identification Map w.r.t. ground truth GT

• for each ground truth object, GT j

– collect Es which pass the coverage test into a func-
tion nji =

P

t

P

i

�
(F t

i,j > tC ])

– determine the majority rules winning estimate îj =
arg maxi nji

– map GT j → Eîj

• end

Figure 11: Procedure for establishing identification mappings.

4.3 Purity

Purity is a measure that can be used to evaluate the degree
of consistency to which an E correctly identifies a GT , and
vice versa. We define purity for object identification simi-
larly to the purity concept which is used to evaluate speaker
clustering [8]. Purity can be evaluated w.r.t. E and w.r.t.
GT .
• Measure I-3: (TP) Tracker Purity. If the identity map

w.r.t. E indicates Ei identifies GT j , the ratio of frames
that Ei correctly identifies GT j ( niĵi

) to the total num-
ber of frames Ei exists (ni) .

TP =
niĵi

ni

(9)

• Measure I-4: (OP) - Object Purity. If the identity map
w.r.t. GT indicates GT j is identified by Ei, the ratio of
frames that GT j is correctly identified by Ei ( njîj

) to
the total number of frames GT j exists (nj) .

OP =
njîj

nj

(10)
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4.4 Procedure and Example

The procedure for identification evaluation is shown in Fig-
ure 12. An example is shown in Figure 13 where three GT s
are tracked and identified by four Es.

Procedure for evaluating identification.

1. Construct identity maps for entire sequence, as outlined in
Section 4.2.

2. Assign FIT and FIO errors for each frame by checking if E
and GT segments which pass the coverage test match Es and
GT s indicated by the identity maps. Label segments as FIT,
FIO, or correct.

3. Report FIT and FIO, the accumulation of each error type
normalized by the frame count n and max(N t

GT , 1) .

FIT =
1

n

n
X

t=0

FITt

max(N t
GT , 1)

, FIO =
1

n

n
X

t=0

FIOt

max(N t
GT , 1)

(11)
4. Calculate TP for each E and OP for each GT . Report aver-

age tracker purity TP and average object purity OP.

TP =
1

NE

NE
X

i=0

TP, OP =
1

NGT

NGT
X

j=0

OP (12)

Figure 12: Procedure for evaluating identification.

In step 3 the errors are normalized in a similar manner
to the configuration errors in Section 3.5 to facilitate com-
parisons over data sets of differing length and content. In
step 4, the tracker purity is normalized by the total number
of Es appearing in the sequence (NE), and the object purity
is normalized by the total number of objects in the sequence
(NGT ).

To assist in the evaluation, an identification graph can
be constructed, which visually describes tracking associa-
tions between Es and GT s (see Figure 14). These associa-
tions can be determined by performing coverage tests every
frame on each E and GT . The presence of ground truth ob-
jects are represented by solid lines, and associated Es are
shown as surrounding colored bars. Looking at the identifi-
cation graph, it is obvious how identity maps are generated.
The map w.r.t. GT is created by determining for each GT ,
which E tracks it the longest. Inspecting Figure 14, object a

is clearly tracked by 1 the longest, b tracked by 2, and c by
3. Thus, the identity map w.r.t. GT is:

ground truth GT

a b c

E 1 2 3

In the other direction, the map w.r.t. E is created by de-
termining for each E , what GT it tracked the most. In Figure
14, 1 tracked a the longest, 2 tracked b, 3 tracked c, and 4
also tracked b. The identity map w.r.t. E is:

Figure 13: Identification. A tracking scenario in which four Es (1,2,3,4)
track three GT s (a, b, c). (Frame 1) a enters from the left, untracked.
(Frame 2) a is correctly tracked and identified by 1, b enters from the right.
(Frame 3) a & b approach each other, 2 tracks and correctly identifies b.
(Frame 4) a & b pass each other. (Frame 5) After passing, 1 swaps from
a to b, and 2 swaps from b to a, generating FIT & FIO errors. c enters
from the right correctly tracked and identified by 3. (Frame 6) 2 dies, a

approaches c untracked, 1 continues to misidentify b. (Frame 7) 1 becomes
lost and generates a FP. 4 appears and tracks b, generating a FIT. (Frame
8) b exits the scene, leaving c correctly tracked and identified.

estimate E

1 2 3 4

GT a b c b

The next step is to locate identification errors and label
the segments as FIT, FIO, or correct. Looking at the identi-
fication graph can assist in understanding error location and
segment labeling. First, correctly identified GT segments
are found by a table lookup on the map w.r.t. GT ; all seg-
ments where GT j is tracked by Eîj

are labeled as correct
(e.g. where blue tracks a in the lower left of Figure 14).
Segments where GT j is tracked by other Es are labeled as
FITs (e.g. after a and b cross in Frame 5, a is misidentified
by 2). FIO errors are labeled in a similar manner. A table
lookup on the map w.r.t. E is done to find GT ĵi

for each

Ei. GT segments matching ĵi are labeled as correct (e.g. 1
correctly identifies a in the lower right of Figure 14), others
are labeled as FIO errors (e.g. 1 misidentifies b after swap-
ping in Frame 5). Finally, results from steps 3 & 4 of the
procedure are computed and reported, as shown in Table 4.
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Figure 14: (top) Identification graph for example in Figure 13.
The presence of GT objects is denoted by solid black lines. As-
sociated Es are represented by colored bars. (lower left) Errors
viewed w.r.t. GT . (lower right) Errors viewed w.r.t. E .

FP FN MT MO CD FIT FIO
1 3 0 0 -2 4 3

FP FN MT MO CD FIT FIO TP TO

.06 .23 0 0 0.29 .19 .13 .79 .61

Table 4: Results for example of Figure 6. (top Accumulation of
errors over 8 frames. (bottom) Errors from step 3 of Figure 12.

4.5 Identity State

The identity state, id, is a binary variable that operates in a
similar manner to the track state (id = 1 for correct iden-
tification, 0 otherwise). The identity state is defined for
each GT , but requires correct identification in both direc-
tions (Ei = Eîj

w.r.t. GT , and GT j = GT ĵi
w.r.t. E). Like

τ , the identity state is useful for setting rules determining
when to evaluate task-specific measures.

idt
j =

{

1, ∃ Ei s.t. j = ĵi and i = îj
0, otherwise

(13)

5 Task-Specific Measures

Many performance measures are often task-dependent.
Some task-dependent measures may have a physical mean-
ing, for example: object velocity, head angle, etc. Other
task-specific measures might include frame-based labeling
tasks. It is not within the scope of this document to an-
ticipate the multitude of possible tracking tasks and define
appropriate measures for each; this framework allows users
to define these measures themselves.

The track state τ t
j and identity state idt

j can be used to
assist in the definition of task-specific measures and to au-

tomate their calculation. They can be used as a switch to
decide if task-specific performance calculations should be
performed on a given estimate-object pair (i, j) at time t.
For instance, when trying to measure the difference between
the estimated vE and ground truth velocity vGT of an object,
it makes sense to make calculations only for frames where
the GT is being tracked (τ t

j = 1). When τ t
j = 0, no E is

tracking the GT , and hence no vE is available. The iden-
tity state idt

j can be used in a similar manner to compute
measures when a GT is correctly identified. In order to run
batches of experiments on the same dataset, τ t

j and idt
j are

expressed with respect to the GT , as the number of GT s
remains static but the Es do not.

Finally, Fij can be used to evaluate the ”quality of track-
ing”. Higher values of Fij indicate better tracking. Setting
the criteria that the F-measure is only reported when τ t

j = 1
ensures that only valid pairs of Es and GT s are evaluated in
a given frame.

6 Conclusion

In this paper, we have defined a set of measures and pro-
tocols for evaluating the configuration and identification
performance of multi-object tracking systems, in an ef-
fort to address the lack of uniform metrics in the track-
ing community. In our view, these measures and proto-
cols are meaningful to both academic and real-life evalu-
ation, and are defined within a broader framework which
is designed to evaluate all important aspects of tracking
performance. Evaluations of several tracking methods us-
ing these measures and related software can be found at
http://www.idiap.ch/∼smith.
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