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for the striatum dataset, which resulted in CRFs of similar
sizes.

The mitochondria we find are depicted as 3D volumes in
Figs. 1 and 7. Their outlines are overlaid in Fig. 8 on a single
slice, along with those obtained using competing methods.

Performance is again measured by comparing 3D volumes
against ground-truth ones in terms of the Jaccard index de-
scribed in Section VII-B, but using volumes instead of areas.
The corresponding results are provided in Table II. For [30],
we use is a non-linear RBF-SVM classifier. The numbers
exhibit the same trends as those discussed at the end of
Section VII-B.

For the sake of completeness, we have also tested a very
recent mitochondria segmentation method [45] that does not
rely on structured learning. Instead, it trains a cascade of
classifiers at different scales and has been shown to outperform
earlier algorithms based on Neural Networks, SVMs, and
Random Forests on EM imagery. For the hippocampus and
striatum datasets, it yields 83.8% and 83.5% Jaccard indices,
which is much lower than what we obtain. The time required
to train this method on our data (72605s) is also significantly
longer than all those in Table III, and discussed in the next
section.5

D. Training Cost

The time and memory required to train a classifier are
important considerations for any Machine Learning approach.
Concerning the memory requirements, the working set used by
our approach does not lead to a significant increase in memory
as we only need to store the feature maps, which are generally
much more compact than the full labelings of the CRF.

While the linear SSVM is fast to train thanks to the use
of kernelized features, the training of the first non-linear
SVM used to transform the features can still potentially incur
quadratic cost. Fortunately, it can be kept in check using
known techniques such as randomly sampling the data or
iteratively mining for hard examples [13]. However, these
techniques cannot be used to directly speed up the SSVM
though because they treat pixels as independent examples and
disregard the structure of the graph.

We conducted a run-time analysis of the standard subgradi-
ent method of [40] against the three versions of our algorithm
discussed in this section. Table III gives the training time for
each method for the same 1000 iterations, which is enough for
all methods to have converged. Note, however, that Fig. 10
shows that Working sets + inference + autostep requires
only about 200 iterations to converge. So, even though each
iteration is a little slower due to the overhead attributable to
maintaining the working set and doing a line-search, Working
sets + inference + autostep yields in practice better solutions
faster. Table III also shows that Working sets + sampling is
much faster than solving the loss-augmented inference to find
the most violated constraint.

5We used the publicly available Matlab implementation.

EM Photon receptor

SSVM [55] 43250s 1113s
SampleRank [57] 2524s 382s
SGD + Sampling 2481s 354s
Working sets + sampling 2619s (+5.5%) 370s (+4.5%)
SGD + inference [40] 5315s 438s
Working sets + inference 5842s (+9.9%) 492s (+12.3%)
Working sets + inference + autostep 6142s (+15.6%) 510s (+16.3%)

TABLE III
TRAINING TIME REQUIRED TO REACH CONVERGENCE (T = 100

ITERATIONS FOR SSVM AND T = 1000 ITERATIONS FOR ALL OTHER
METHODS) ON THE HIPPOCAMPUS EM DATASET. THE THREE VERSIONS
OF OUR APPROACH DISCUSSED AT THE BEGINNING OF SECTION VII ARE

LABELED IN BOLD. THE SLOWDOWN RESULTING FROM USING THE
WORKING SET AND THE ADAPTIVE STEP SIZES IS SHOWN IN

PARENTHESES.

(a) Training set, EM (b) Test set, EM

Fig. 9. Learning curves showing the training and test scores (Jaccard index)
on the Hippocampus dataset as a function of the number of iterations t. We
report results for the sampling method with and without working set in green
and blue respectively.

E. Generalization Error

The evolution of the training scores and test scores as a
function of the number of iterations is shown in Figs. 10
and 9. The parameters for the methods reported in these figures
were found using cross-validation to avoid over-fitting. We
have seen that all these methods could reach higher scores on
the training set using different sets of parameters. Working
sets + inference + autostep achieved the highest score on
the training set and had to be regularized by increasing the
value of λ (increasing ρ(t) also lead to a better generalization
error). The curves in Fig. 9 clearly show that the working set
of constraints produces much higher score on both the training
and test sets. Fig. 10 shows that Working sets + inference +
autostep significantly outperforms SGD on the training set as
well as the test set. As shown in Table IV, it also outperforms
SSVM on the training set.

Hippocampus Striatum Photon receptor

SSVM 90.9% 86.3% 86.3%
Autostep 93.8% 90.6% 89.2%

TABLE IV
TRAINING SCORES ACHIEVED BY SSVM AND Working sets + inference +

autostep USING THE ORIGINAL FEATURES ON ALL THREE DATASETS.
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(a) Training set, EM (b) Test set, EM

Fig. 10. Learning curves showing the training and test scores, expressed in
terms of the Jaccard index, on the Striatum dataset as a function of the number
of iterations t. We report results for Working sets + inference + autostep
and SGD + inference in red and yellow respectively.

F. Further Observations

1) Approximate subgradients: Our approach, and most of
the existing methods presented in the related work section, all
optimize the same objective function, given in Eq. 3, and rely
on the computation of the most violated constraints. When
these constraints cannot be obtained exactly, as is usually the
case in image segmentation, the subgradient estimates are then
necessarily only approximate. Certain methods, such as [55],
require these quantities to be exact, while others, such as
[40], [14] and [23], may work with approximate subgradients
to obtain convergence up to a certain accuracy. The experi-
mental results suggest that using a history of constraints as
well as appropriate step sizes make learning more robust to
approximation errors. An in-depth theoretical analysis of the
accuracy of the subgradients will undoubtedly provide further
insight into the behavior of this class of methods; though this
is beyond the focus of this work, which is motivated by the
need to improve performance in known applications.

2) Parameter selection for Kernelized features: While in
certain cases kernel methods show improved performance
compared with linear methods, they also introduce tuning
parameters such as the number of support vectors. The kernel
method presented in Section IV is not exempt from this
difficulty. The selection of the number of support vectors for
this method was done by cross-validation over the regulariza-
tion constant λ and by empirically selecting an appropriate
number of training samples. The memory complexity of the
linear SSVM is affected by the dimension of the kernelized
features and is therefore another limiting factor that must be
considered. We found empirically that the number of support
vectors scale almost linearly with the number of training
samples when fixing the regularization constant λ. In our case,
we found a training set of 40,000 samples to be a good trade-
off between performance and training complexity.

3) Our Approach vs SSVM: Although SSVM takes fewer
iterations to converge, we found the cost per iteration to
be much higher than SGD-based methods, which is mostly
due to the higher cost of the loss-augmented inference. We
hypothesize that the region of the space visited by SSVM
is highly non-submodular. One alternative to address this
problem proposed in [50] is to perform the optimization over

a much smaller set of parameters for which exact optimization
can be performed with graph-cuts.

4) Working sets + inference vs Working sets + inference
+ autostep: As stated earlier, all methods converged after at
most 1000 iterations. The improvement due to the automatic
step size selection reported in the experimental section is thus
not due to a faster rate of convergence. Rather, we believe it
to be attributable to the difficulty of manually setting the right
step size at each iteration. We found empirically that different
step size selections can occasionally yield improvements on
specific datasets but we did not find a specific one that would
perform well for all datasets. We thus opted for the standard
decreasing scheme η(t) = β

t that gave the best results overall.

VIII. CONCLUSION

Understanding neural connectivity, function, and structure
of the brain requires detailed 3D models. Although new
imaging techniques such as FIB-SEM allow neuroscientists
to visualize the brain in great detail, these crucial models
are mostly still traced by hand. To eliminate this barrier to
progress, new automatic segmentation techniques for identify-
ing structures of interest in these rich datasets are required.

To address this need, we have presented a new segmentation
framework that nearly achieves a human level of performance,
raising the bar over previous methods, including our own
earlier work. To this end, we introduced three key innovations,
including a technique to leverage the power of non-linear
kernels in a structured prediction framework as well as a
working set based approximate subgradient method with line-
search to learn graphical models when inference is challeng-
ing. Our method is particularly appealing for learning large
CRFs with loops, which are common in computer vision
tasks, since under these circumstances the use of working sets
of constraints makes the subgradient method more robust to
approximation errors and produce higher-quality solutions.

The benefits of our approach were clearly demonstrated on
2D confocal optical images and 3D EM image stacks, but it
is important to note that our method is general and can be
applied to imagery from any type of microscopy.
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